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Abstract

Parallel computation fortwo-dimensionat convective flowsin cavities with adiabatic horizon-
tal boundaries and driven by differential heating of the two vertical end walls, are investigated
using the Intel Paragon, Intel Touchstone Delta, and Cray T3D. The numerical scheme, includ-
ing a parallel multigrid solver, and domain decomposition techniques for parallel computing are
discussed in detail. Performance comparisons are made for the diflerent parallel systems, and

numerical results using various numbers of processors are discussed.



Nomenclature

h height of cavity

1 length of cavity

g acceleration due to gravity

L = I/h aspect ratio of cavity

R Rayleigh number

T non-dimensional temperature

X, z non-dimensional coordinates

u,w nhon-dimensional velocity components

PFE number of processors

Greek symbols

B coeflicient of therma expansion
¢ non-dimensional stream function
« thermal difTusivity

v kinematic viscosity

o Prandtl number

w non-dimensional vorticity function
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1 Introduction L e

Convective motions driven by lateral temperature gradients in cavities ar¢ important in many areas
of interest in industry and in nature. Applications include the temperature control of circuit board
components under natural convection in the electronics industry, heating and ventilation control in
building design and construction, cooling systems for nuclear reactors in the nuclear industry, flows
and heat transfer associated with all stages of the power generation process, solar-energy collectors
in the power industry and atmospheric and fluvial dispersion in the environment.
Due to the wide range of applications, studies of natural convection flow and heat transfer have
been vigorously pursued for many years. A typical model of convection driven by a latera thermal
gradient consists of a two dimensionalrrectangular cavity with the two verticad end walls held at
different constant temperatures\/ .'Tn order to determine the flow structure and heat transfer across/<
cavities with different physical properties, numerous ana ytical, ex perimental and corn put ational
techniques have been used”. |
o
Experimental investigations of cavity flows driven by lateral heating have been reported in [1],
[2], and [3]. In general, these flows consist of a main circulation in which fluid rises at the hot wall,
sinks at the cold wall, and travels laterally across the intervening core region. The flow structure is
dependent on three non-dimensional parameters: a Rayleigh number R based on the height of the
cavity and the temperature difference across the end walls, the Prandtl number o of the fluid, and
the aspect ratio L (Iength/height).
For cavities of different aspect ratio, Rayleigh number and Prandtl ninnber, extensive num erical

results have been obtained by researchers during the pasttwenty-five years. Elder [4] obtained a

numerical solution for a rectangular enclosure. Quon [5] carried out finite difference computations for
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convection in asquare cavity for a variety of dynamica boundary conditions, Rayleigh numbers and
Prandtl numbers. Cormack, I.eal and Seinfeld [6] obtained numerical solutions in shallow cavities
for a variety of Rayleigh numbers, and more detailed nunerical studies of cavity flows have been
carried out in [7] and [§].

For a shallow cavity (I. — o) and Rayleigh numbers R << L the flow is again dominated by
conduction and consists of a Hadley cell driven by the constant horizontal temperature gradient set
up between the end walls. Cormack, Leal and Imberger [9] predicted that the flow consists of two
digtinct parts. a parallel flow in the core region which extends for most of the length of the cavity

and a second, non-paralel flow near the ends. Non-linear convective effects first become significant

at theends of the cavity where the flow is turned when 1{1:%:: 0(1). The nonlinear end-zone
structure has been studied in [1 O], [1 1], and [12].

The present study focuses on parallel computation for convective flows in cavities with L >> 1.
The problem formulation is given in Section 2. Numerical scheme and parallel computing techniques
are discussed in Section 3 and 4. The numerical results by using different parallel systems and with

various numbers of processors are discussed in Section 5. Finally, conclusions are outlined in Section

2 Formulation

A closed rectangular cavity of length 1 and height h is considered in which two-dimensional motions
are generated by maintaining the vertical end walls at different fixed temperatures 7y and 7p + Al'.
The cavity is filled with a fluid of kinematic viscosity v, thermal diffusivity « and coeflicient of thermal

expansion B.The appropriate governing equations, subject to the Boussinesq approximation, can




be written in dimensionless form as
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isthe aspect, ratio of the cavity.
It is easily verified that the governing equations and loundary conditions are consistent with

Gill’s [13] centro-symmetry relations

Y(x, 2 )= Pl -z, 1-.2, 1),
T(z,2,0)=1-T(L-2,1—z, 1) (12
w(z,z,t)=w(L-2,1 -2 q

which, for appropriate initial conditions, effectively alow only one half of the flow domain to be

considered,
‘I"he formal asymptotic structure of the steady flow in a shallow cavity where I, >> 1 and

Ri=R/1, = 0(1) is studied by Daniels et a [11]. Further details about core solution’, end-zone

~.

problem, and numerical study in shallow cavities are discussed in [14]. Throughout most of the

—~

cavity ( the core region) the flow is dominated by the lateral conduction associated with a Hadley

N\

circulation , so that
7= guﬂ{(g—%) o1 (R, @) + Ry (2)} + O(L~2) (13)

and
V=R {1+ L7 ey (Ry,0)} 1'(z) + O(17%) (19

as I, = oo, where £ = T,
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and c,(R, ¢) is a constant contribution determined by matching with solutions near the end wall.
Near the cold wall, the solution adjusts to the boundary conditions (8)-(1 O) in a sguare zone

where z, z = O(l), <{/(

T :L~17'($,Z,i) +oo Y=, )+, 0= w(z, z,0)4 . ({—>. o), /"\, “
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and substitution into (1)-(3) indicates that a steady-state solution of the systemn

oT
‘1(— +J(w, ¥) = Vi t Rig, (16)
Vi = —w, (17)
T
it +J(T, %) = V°T , (18)

is required. From (8-11) these equations are to be solved subject to

1/’::%%—:%?:0 on z=01, (19)
P = ZZ)_T—O on =0 |, (20)

and to mnatch with the core solution
V-3 RF'(2), T~z+c+RiF(z) (x-0) (21)
The core temperature is deterinined to order I.~!through the matching requirement
¢ = --2C (22)

but the value of c itself can only be determined by solving the end-zone problem (16)-(22). The aim
of the present work is to determine such solutions (1)-(11) on the whole flow domain or (16)-(22) on

the end-zone region if L >> and B1 = R/L = 0(1) numerically by an effective parallel solver.

3 Numerical Scheme for the Systems

In order to solve the system (16)-(22) numerically, a finite difference method is considered. It was
decided to employ an explicit method based on the Dufort-Frankel scheme outlined in [15] to follow

the evolution of the system, in preference to an implicit method. Methods of the latter type (for




example Crank and Nicholson, Peaceman and Rachford) have the advantage of unconditional numer-
ical stability, allowing a large time step to be used, but involve the solution of large matrix systems
at each time step. Like these methods, the Dufort-Frankel method has second order accuracy and
athough it must meet a Courant condition to maintain numerical stability, it involves significantly
less computational time at each time step.

The heat equation (18) is discretized using central differences in ¢ and z and Arakawa's scheme
[16] for the Jacobian term, to be denoted here by J, leading to an explicit expression for the

temperature Tf‘j“at internal grid points of the form

AYTE, HTE ) | AUTE T ) K1
TR e+ TR - AT ) + T 23)
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At the lower horizontal boundary the temperature can be found using the second order formula
jk 1

7,!;31 - {A—A:rtTf[ i4+1,0 +7| 1, 0] + (_)7271 1 4 i (,'__ (24)
i, 3

T2
obtained using the boundary condition 87'/8z = O while a similar formula is applicable at the upper
boundary. At the cold wall 7§} = O, while the boundary condition on the hot wall takes Tx%!=1.

The vorticity eguation (16) is treated in a similar manner, and at internal grid points
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with the Jacobian term discretized using Arakawa's schenie. The vorticity at the cold wall can be

determined in the second-order accurate form

1
5{As)?

Wo 4 (842, - ¥1.3)> j=012 ..., N,. (26)

Similar formulae are used for the upper, lower, and the right boundaries.

The explicit formulae (23-24) and (25)constitute a threc-layer scheme and so an alternative
method is needed on the first time step to initiate the computation. Here an iterative scheme based
on Successive Over-Relaxation (SOR) was used to solve the equations discretized as a second-order
accurate implicit system and further details this are given in [1 2].

A five-point multigrid method is used to solve the Poisson egaution (17) for the stream function
a each time step, with the solution for a coarse grid used to revise the required solution on a fine

grid. The central difference approximation of equation at internal grid points is written in the form

Vs = (A2)?(Pig1,5 + Yio1,4) + (A2)* (Y541 -+ Yij-1) + wi 5 (Az)2(A2)? @7
BT 2(Az)? + 2(Az)? ' )

and then Successive Over-llelaxation used to obtain the solution within the multigrid scheme, which
is described in full in [17]. On the all boundaries, v is zero. At the present study, a parallel 4-

level-grid Poisson solver has been implemented on different paralel systems, based on the domain




decomposition technique. A V-Cycle scheme is considered in this code with the SOR method as a
smoother. More details about parallel implementations wil | be given in the next section.

The overal scheme of computation for a given Rayleigh number, Prandtl number and Aspect
ratio can be described as follows. An initial state was usually taken either in the form of a conductive
solution with no motion 1' = x/L, y=w =00 <x <L) or in the form of a steady-state solution
obtained at a lower Rayleigh number R. ‘The temperature, vorticity and stream function fields are
then found in succession at each time step, using the modified scheme for subsequent time steps.

)

The computation continues until a steady-state solution is achieved, as measured by the maximum

differences between successive values of 7' and w.

4 Parallel Computing Techniques

4.1 Computing Systems

A paralel computing systermn may be thought of as a collection of n coinputers which communicate
with each other over some kind of communications network. A system with thousands of processors
is called massively parallel, and holds the greatest promise for significantly extending the range
of practically solvable computational problems. A diametrically opposite option is coarse-grained
parallelism, in which there is a small number of processors. In this case, each processor is usually
fairly powerful, and the processors are loosely coupled, so that each processor may be performing a
different type of task at any given time. A significant aspect of paralel computers is the mechanism
by which processors exchange information. Generally speaking, there are two types, known as
shared memory and message-passing architectures. The first uses a global shared memory that can

be accessed by all processors, and in the second case, there is no shared memory, but rather each
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processor has its own local memory. Processors communicate through an interconnection network

consisting of direct communication links joining certain pairs of processors. Some systems might have
a shared memory, and at the same time each processor has its own loca memory. In the following,
three different parallel systems will be introduced, which are the maor computing systems for the
present work.

Intel Touchstone Delta: The Delta at the Concurrent Supercomputing Consortium at California
Institute of Technology is a message-passing MIMD (Multiple Instruction Multiple Data) multicom-
puter, consisting of an ensemble of individua and autonomous nodes that communicate across a
two-dimensional mesh interconnection network. It has 512 computational 1860 nodes, each with 16
M bytes of memory and each node has a peak speed of 60 Megal'1.OPS. A Concurrent File System
(CFS) is attached to the nodes with a total of 95 Gbytes of formatted disk space. The operating
system is Intel’s Node Executive for the mesh (N X/M).

Intel Paragon XI'/S: This MIMD distributed machine has a 2D mesh topology, with a faster
processor and network speed than the Delta systcm. The one at the Jet Propulsion Laboratory
is currently configured with 56 compute nodes, and each one has a peali speed of 75 MegaFLOPS
and 32 Megabytes memory. The operating system is the Paragon OSF/1, based on the OSF/1
operating system from the Open Software Foundation. The NX communication library was used for
the present study, which makes it portable to the Delta machine.

Cray T3D: The Cray T3D at JPL, currently one of the n 1ost powerful M IMD computers available,
has 256 compute nodes with 150 MegaFL.OPS peak performance and 64 Megabytes memory per
node. Logically, it has a shared memory, and physically a distributed memory, associated with

a processor. It uses a three-dimensional Torus as the interconncct network. A message passing
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library is available, based on PVYM3 software developed by the Oak Ridge National Laboratory, the
University of Tennessee, and Emory University. Numerical results from these systems will discussed

|ater.

4.2 Domain Decomposition

In order to implement a paralel code with the Dufort-Frankel-Multigrid method for natural convec-
tive flow problems in rectangular cavities, a two-dimensional origina fine mesh is partitioned into
blocks of consecutive columns (L >> 1) and distributed onto a logicaly linear array of processors
(Figure 1). Each processor has a subdomain (Figure 2), and the whole coinputational job is divided
into n subjobs if N processors are used. This is a natural way for data partitioning with the above
geometries since the communication among subdomains needs to be minimized. Once the partition
structure is set up, the next concern is about how to update al informat ion at neighbors in each

subdomain to keep the computation continuous over the whole computational domain.

43 Parallel Dufort-Frankel-Multigrid Algorithms

One of the major concerns in the design of a paralel code is communications. The major part of
communication is that each subdomain needs to exchange information with its neighbors and this
is done by direct message-passing software at each iterative level on Intel Paragon, Delta, and Cray
131). Since only the values at the boundaries of each subdornain need to be updated at each iteration,
the total amount of communication is still relatively small comparing with the whole computation.
The other part of communication occurs in 1/0 operations. The main structure of the parallel
algorithm for the whole computation is briefly summarized by the following steps:

1. Partition the computational mesh.




2. Set initial conditions on each subdornain.
3. Exchange edge values with neighboring processors.
4. Perform Dufort-Frankel update ’1".(,‘;) locally on each processor.
5. Perform Dufort-Frankel update w,(";-) locally at al interior grid points on each processor,
6. Perform parale Mulligrid update of '(/),(,’}) on all processors
7. Perform boundary calculations for w,(f}) on all processors involving boundaries.
8. Check conditions for a steady-state solution. If satisfied, stop. Otherwise,
advance time step k +-k + 1, and go to 3.
And the paralel Multigrid solver is summarized asthe following:
For the Poisson equation V23 = —w, the discrete form can be written as A" =w", and the
parallel V-Cycle scheme 9" - My (¢, w") with total grid levels=: N is outlined as :
1. Dok=1,N-1
2 N
Relax nl times on A*¢"* = w" with a given initia gucss 1/’\" ,and after each relaxation /
iteration, exchange edge values with neighbors.
Wt I2h(wh — Abyh) p2he- O
Enddo
2. k = N (the coarsest grid), solve APy = wh
3.Dok=N -1,1
Correct P  p* + 12, 42h.
Relax n2 times on A*% = wh with initial guess ¥*,and after each relaxation
iteration, exchange edge values with neighbors.

knddo




§

Here IZh and 1}, arc restriction tor and interpolation operator respectively, and in the

present study, injection and linear interpolation are used. A n example of Multigrid structures with
a partitioning on 4 processors is given in Figure 3. ‘I'he data distribution on each processor on one
grid level is illustrated in Figure 4, and a similar strategy is used for the rest of the grid levels. Here

each processor needs to store its own subdomain data and its neighbor boundary data as well.

5 Results and Discussion

Various numerical experiments have been carried out on the Intel Delta, the Intel Paragon, and
Cray T3D. A model with Ry =7200,0 = 0.733, L = 16, and mesh=- 64 x 1024 was tested on those
9 v 77 W s TS ‘v

machinﬁ‘. he computatiomrj§’ iiopped when the following conditions pre satisfied, corresponding to

the attainment of a steady-state solution:

k41 ik
max [1757 = 151 < e,

max FHwf ksl < e,
where k is the time level index and ¢; and €2 are usually taken to be10~¢.

In order to compare the performance on each system, 16 processors were used for the parallel
code with the above numerical model. The computation results are showed in Table 1, which lists the
total CPU time on the test problem for the three systems. The Cray T3D gives the best performance,
and the Paragon shows better performance than the Delta By various tests on the parallel systems
and comparisons with some previous results, the parallel code is proven numericaly stable, efficient

A

wand reliable.
Numerical results were obtained for various Rayleigh numbers and Prandtl numbers. Here results

for the flow in water are discussed. ‘I’he solution for 21 = 2000 and & = 6.983 in the steady-state
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%e/illustrated in Figure 5 by the contour plots of stream function, vorticity, and temperature. The
results have been compared with the asymptotic structures predicted by boundary-layer theory [18].
According to asymptotic predictions, for ¢ = 0.733 ¢¢ = 5.2849 x 10-s, thce in (21) satisfies
CNRZ/ 5co (8). Our numerical computation gives co == 4.9605 x 105 which is in excellent agreement
with the theoretical prediction. Since the theory is based on high Rayleigh number, numerical
simulation for higher Rayleigh number in the case of water will be considered in future work.

For low Prandtl numbers with a small aspect ratio, humerica computation for the whole cavity
is considered. Figure 6 shows the contour plots of stream function, vorticity, and temperature for
o =0.005, R=4 90) and L = 4 with a mesh size equal to 64 x 1024. The results show the existence
of secondary flow consistent with liner stability analysis in [1 O] and [1 1].

More numerical experiments have been investigated on the Cray 1'31) with various numbers of
processors. Figures 7 and 8 are the scaling performances of t he paralel computation code. Various
meshes have been used with a test model of Rl == 400, o= 0.733, L. = 64 for a fixed time steps.
The largest problem has a global grid of 256 x32]68 distributed on 256 processors, with total
unknowns of 41,744, 384. Figure 7 shows the ratio é execul ion time 7(1)/7'(n) verses the number
of processors. 21(l) is the execution time of a code for a given problem onone processor and 1'(n)
is the execution time of a code for a given problem on n processors. Figure 8 shows the scaling
performance for large global grids on the Cray T3D. These figures show that the speed up from 1
processor to 256 processors goes well for a larger grid, but for a small problem, it starts to slow
down when more processors come to play. This is mainly duc to the computational load for a small
problem is relatively small and the communication part weights much heavier for the whole code

when a large number of processors is used. ri,t will be no longer the best strategy to partition the

15




computational domain into blocks of columns if the number of processors is much larger than the
aspect ratio L of a cavity. In this case, 2D partitioning should be applied, which will be considered
in our future work. More numerical results for high Rayleigh numbers and large grids on paralél

systems are given in the forthcoming paper [19].

6 Conclusions

In this paper, a detailed numerical study of natural convection has been described with different
parallel systems. A domain decomposition technique has been efficiently used in solving the Poisson
equation with a Multigrid method and the other two time-dependent equations with the Dufort-
Frankel scheme. The paralel code shows good convergence and efficiency which indicate the potential
of paralel systems for solving large complicated fluid dynainics problems. The present numerical
solutions appear to be in good agreement with theoretical predictions. The discrepancy of CPU for
the whole computation on the three systems is due to the diflerence of hardware on each system and
the network connection used. Obviously, from the point view of speed, the Cray 13D ranks first,

and the Paragon is dightly faster than the Delta.
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